Boosting methodology for regression problems
نویسندگان
چکیده
Classification problems have dominated research on boosting to date. The application of boosting to regression problems, on the other hand, has received little investigation. In this paper we develop a new boosting method for regression problems. We cast the regression problem as a classification problem and apply an interpretable form of the boosted naïve Bayes classifier. This induces a regression model that we show to be expressible as an additive model for which we derive estimators and discuss computational issues. We compare the performance of our boosted naïve Bayes regression model with other interpretable multivariate regression procedures.
منابع مشابه
Outlier Detection by Boosting Regression Trees
A procedure for detecting outliers in regression problems is proposed. It is based on information provided by boosting regression trees. The key idea is to select the most frequently resampled observation along the boosting iterations and reiterate after removing it. The selection criterion is based on Tchebychev’s inequality applied to the maximum over the boosting iterations of ...
متن کاملCombining Bagging, Boosting and Random Subspace Ensembles for Regression Problems
Bagging, boosting and random subspace methods are well known re-sampling ensemble methods that generate and combine a diversity of learners using the same learning algorithm for the base-regressor. In this work, we built an ensemble of bagging, boosting and random subspace methods ensembles with 8 sub-regressors in each one and then an averaging methodology is used for the final prediction. We ...
متن کاملRobust Boosting via Convex Optimization: Theory and Applications
In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules – also called base hypotheses. The so-called boosting algorithms iteratively find...
متن کاملThe Boosting Approach to Machine Learning An Overview
Boosting is a general method for improving the accuracy of any given learning algorithm. Focusing primarily on the AdaBoost algorithm, this chapter overviews some of the recent work on boosting including analyses of AdaBoost’s training error and generalization error; boosting’s connection to game theory and linear programming; the relationship between boosting and logistic regression; extension...
متن کاملCombining Bagging and Additive Regression
Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in t...
متن کامل